
245A publication of Futures Truth™ Co.

Issue #3/2007

Using Excel’s Visual Basic to Test & Trade Your System - Part 1

Back testing and trading a system real time is easy if you have access to TradeStation™, TradersStudio,
Ninja Trader or any of the other available commercial applications. If you don’t then its pretty much up
to you and a calculator or spreadsheet. In a lot of cases this is all you need to calculate tomorrow’s or-
ders. However, back testing using these simple tools can be a tremendous nightmare and lead to inaccurate
results. For the past 18 years I have worked on creating this type of software and I thought it would be fun
to dedicate the next three installments of George’s Corners to the development of a trading system order
generator and back tester using tools that are generally found on any computer: Excel and Visual Basic.
	
Microsoft Visual Basic for applications is found in Microsoft Word and Excel and be found under the tools
menu of these applications. You can also buy the Visual Basic IDE (Integrated Development Environment)
that can build standalone applications. For our purposes we don’t need that type of power and we want
to use what we already have. If you have Microsoft Excel, then you are in business. Well almost. Some
knowledge of programming is necessary to get the full benefits of the next three installments. If you are just
reading this to get yourself acquainted with the concepts, then you will also be rewarded by receiving the
Dynamic Break Out System (DBS) Excel workbook.
	
We will tip toe into the building of our software by first writing the code for generating the next day’s orders
for the DBS. Before we can write one line of code we need to set up a spreadsheet with data and some
column headings. I have done most of the tedious work for you. Go to ftp://www.futurestruth.com/pub and
download the DynamicBreakOut.xls file to your computer and open it up. It should look something like
this. I simply created some headings for the information that I thought would be needed to help trade the
system and imported the September 2007 contract of the bonds. I included the date, open, high, low and
close data in the spreadsheet. Before I can explain the other column headings you will need to understand
how the DBS system works.

246A publication of Futures Truth™ Co.

Issue #3/2007

Using Excel’s Visual Basic to Test & Trade Your System - Part 1

I developed the DBS back in 1996 for a series of articles in Futures magazine and the system has done
fairly well since. The backbone of the system is the old Donchian N week breakout; buy the highest high N
weeks back and sell short the lowest low N weeks back. Instead of using a fixed N value or an optimized N
value for the different markets, I decided to let the market tell the system the value of N. This was accom-
plished by the use of an adaptive algorithm; a method that changes itself based on available resources. My
algorithm was based on the notion that market noise was directly related to volatility; the more volatility
the more noise. Systems seem to get confused during noisy markets so I increased N when the markets ex-
hibited higher levels of volatility and decreased N when the markets quieted down. As N increased so did
the look back period which in turn pushed the buy and sell points further away from the current market. A
decrease in N brought the buy/sell points closer and this occurred during periods of low volatility. A fixed
money management stop was also included in the system even though it didn’t help the overall results that
much.
	
Now let’s look back at the column headings in the spreadsheet. Some of the columns are self explanatory
so I won’t go over them. StdDev shows the standard deviation for the past thirty days. LookBack shows
the value of N - as you can see it moves in the same direction as the standard deviation. Highest High
and Lowest Low columns show the highest high and lowest low for past N (Look Back) days. Cur-
rent Pos shows the current position of the DBS system. Entry Price shows the current trade’s entry
price. Protective Stop gives the current money management stop price and Trade P/L shows the profit
or loss of the closed trades. I also have a Floor and Ceiling cell designation. Because we are adjusting
N (lookback value) based on the adaptive algorithm, we need to put constraints on this value. We don’t
want to look back further than 60 days nor less than 20. I did not need to include all these columns in this
spreadsheet to calculate the next day’s trade signal, but I thought it would help with debugging and trading
the system. We can simply look at any date and see what the standard deviation, highest high, lowest low,
current position and protective values were.

Before we jump into
the code let’s go ahead
and run the DBS macro
(VB’s nomenclature
for sub program) so we
can see the end result.
Make sure you have
the DynamicBreak-
Out workbook open
and go under the tools
menu. From there go
to Macro and slide
over to the sub menu
and select Macros.
This should bring up
the Macro dialog box
with RunDBS listed at
the top. Click the Run
button and the Dynam-
ic BreakOut dialog box
will come up and

247A publication of Futures Truth™ Co.

Issue #3/2007

Using Excel’s Visual Basic to Test & Trade Your System - Part 1

look something like this. Here you can change the Floor, Ceiling, Protective Stop, Big Point Value
and the Number of Ramp Up Bars. The Floor and Ceiling values limit the N-day look back value. In
the default case the value can’t go below 20 nor above 60. The protective stop is set to $1000 and since we
are working with the US bonds the Big Point Value is also set to $1000. The Big Point Value is the dol-
lar amount of a 1.00 move. So a move from 106.01 to 107.01 would be equivalent to a $1000 move. The
Number of Ramp Up Bars is the value of the number of days necessary to calculate the trade signals.
Since the N-day value can be 60 days, we set this value to 60. The other five text boxes are where the
information for the next day’s trade signal is presented. In this case we will be liquidating our short posi-
tion at 111.6875 on a stop. Since we are working with the bond market, you would need to convert this
to 32nds before you placed the stop order. We currently have $3656.25 in OTE. If you wanted to use this
spreadsheet to generate your next day’s trading signal you would need to add another line of data in the
spreadsheet and then re-run the macro. This software isn’t that sophisticated yet, but it is sufficient enough
to help you with generating your signals without error. The best part is it’s free, and when we are done,
adaptable to any end of day trading system.

Let’s go ahead and ease into some of the Visual Basic code. The first few lines of code are preceded by
a single quote (‘). This lets the VB interpreter know the line or lines following are comments and not to
be translated into machine language. These comments make the code easier to read and understand for
someone else other than the programmer. So the first four lines are just their to explain what the program
is doing and who wrote it and when they wrote it.

‘Subroutine to calculate the Buy and Sell Signal for the
‘Dymanic Break Out System
‘Template can be used to program any system
‘programmed by George Pruitt in June 2007

The next line gives the subroutine a name and the names of the variables that will pass back and forth from
the Dynamic Break Out dialog box. All of the information that is included in the dialog box is communi-
cated to the subroutine through this one line of code.

Sub DBSSub(flr, clg, orderString1, orderString2, orderPrice1, orderPrice2, lastPL, protStop, big-
PointValue, rampUP)

‘Name of the subroutine <sub program> that will calculate the signals.
‘We will pass <send and receive> these arguments from/to the dialog box.
‘ flr - the minimum look back period
‘ clg - the maximim look back period
‘ orderString - in english what we will do
‘ orderPrice - the price where we will take action
‘ lastPL - current trade profit or loss
‘ protStop - what stop in points is being used
‘ bigPointValue -$ value of a full point move-$1000 for bonds-$1250 for currencies
‘ rampUp - how many days needed for calculations before a trade can take place

The next lines of code starting with the keyword DIM is where we declare the variables that we will be us-
ing in the subroutine. The names are somewhat explanatory - myDate(500) is declaring a list of 500 items
that will hold the dates of all the data. Dim is simply tell VB to reserve enough space to handle 500 dates,

248A publication of Futures Truth™ Co.

Issue #3/2007

Using Excel’s Visual Basic to Test & Trade Your System - Part 1

opens, highs, lows, closes and any other variables that we may need. If we have more than 500 rows of
data, then we would need to change the 500 to whatever we may need plus another 100 or so. It’s better to
reserve more space than we need, because if we don’t it can lead to major computer errors.

Dim stdArr(29), myDate(500), myHigh(500), myLow(500), myOpen(500), myClose(500) As Double
Dim cnt, i, j, length, hh, ll, dataCnt, baseRow as Integer
Dim pos, price, trdProfit, stoppedOut As Integer
Dim stopPrice, myPrice, myPos, longLiqPrice, shortLiqPrice as Integer
Dim buyStop, sellStop, displayRow As Integer
Dim delta, realLength, stdDev, prevStdDev As Double

Because we have two rows reserved for column headings we need to skip these two rows and we need to
select the first sheet in the workbook.

baseRow = 3 ‘Where the actual data starts
dataCnt = 0
Sheets(“Sheet1”).Select ‘Select Sheet1 to access the data

The next lines are key to understanding how VB works with cells and the lists we have created to hold the
data. A cell, as we all know, is referred to by first is row and then its column. The first cell in any spread-
sheet is located at row 1, column 1. This can also be written as Cells(1,1). Cells is a keyword built into
VB and the parentheses are necessary. The first number inside the parentheses is the row location and the
second is the column location. Again, I have made several comments inside the code to help explain what
we are doing here (see the (‘) at the beginning of each line).

‘Read in the data
‘Column 1 - Date -- Cells(3,1) - Cells(Row,Column)
‘Column 2 - Open -- Cells(3,2)
‘Column 3 - High -- Cells(3,3)
‘Column 4 - Low -- Cells(3,4)
‘Column 5 - Close -- Cells(3,5)

Column 1 holds all of the different dates and column 2 holds all the opening prices, etc.,. See how the
first date is referenced by Cells(3,1). Here we are saying the first date is located in row 3 column 1 (3,1).
The first open price is located in row 3 column 2 (3,2). To get the data into our arrays (lists) we must loop
through every row that contains valid data. Since we won’t know exactly how many times to loop, we can
loop until we find a row without any data. This is exactly what we are doing with our Do While loop. No-
tice how dataCnt starts at zero - VB allows zero based arrays, which simply means the first element (item)
in our list can be indexed (referred to) by the number 0. The first date in the spreadsheet is in Cells(3,1),
whereas the first item in our myDate list is myDate(0).

Do While Cells(dataCnt + baseRow, 1) <> “”
	 myDate(dataCnt) = Cells(dataCnt + baseRow, 1)
	 myOpen(dataCnt) = Cells(dataCnt + baseRow, 2)
	 myHigh(dataCnt) = Cells(dataCnt + baseRow, 3)
	 myLow(dataCnt) = Cells(dataCnt + baseRow, 4)
	 myClose(dataCnt) = Cells(dataCnt + baseRow, 5)

249A publication of Futures Truth™ Co.

Issue #3/2007

Using Excel’s Visual Basic to Test & Trade Your System - Part 1

 dataCnt = dataCnt + 1
Loop

Here we start collecting the information that was provided in the dialog box - floor, ceiling, protective
stop, rampUp, and Big Point Value. We also put the flr and clg values into the Floor and Ceiling cells on
the spreadsheet. We initially set length (the number of days that we look back to obtain the highest/lowest
high/low values) to the flr value (20), and we set our pos to 0 (flat), our buy stop price to 999999 and our
sell short stop to 0.

Cells(2, 2) = flr ‘Plug in the floor input into this cell on the spreadsheet -- for display
Cells(2, 4) = clg ‘Plug in the ceiling input into this cell on the spreadsheet

length = flr				
pos = 0 ‘Start us out flat

protStop = protStop / bigPointValue

longLiqPrice = 999999
shortLiqPrice = 0
buyStop = 999999
sellStop = 0
stdDev = 1

Now that we have read all of our data into our arrays we need to loop through each day and calculate our
buy/sell points and see if a trade has occurred. We need to skip past the number of ramp up days so that we
can lookback in time and calculate our standard deviations, highest highs and lowest lows. We will also
start inputting our calculations into cells on the spreadsheet. Since our lists are not exactly in synch with our
cells index, we must off set our cells by the baseRow value.

displayRow = rampUP + baseRow ‘Start on the first date after the ramp up period
i = rampUP ‘Array index starting at the first day after the rampUp
Do While Cells(displayRow + 1, 1) <> “” ‘Do while there is something in the first column
									
So we will index our data arrays with i and our cells with displayRow. The next step is to calculate the stan-
dard deviation for the past thirty days. This is done in the “for-next loop” below. We know how many days
(iterations) we are looking back so we can use a “for loop”. So we start at our current i value and go back
into time 30 days and load a temporary list with 30 elements of closing prices.

‘ 	 start looping through all data
‘	 Setup calculations
	 cnt = 0
	 For j = i - 29 To i
		 stdArr(cnt) = myClose(j) ‘load the last 30 days of closing prices into the 				
cnt = cnt + 1		 ‘stdArr Array or List
	 Next j

250A publication of Futures Truth™ Co.

Issue #3/2007

Using Excel’s Visual Basic to Test & Trade Your System - Part 1

After the loop we pass our list to the StDev worksheet function and it passes back the standard deviation of
the data sample.

	 prevStdDev = stdDev
	 stdDev = Application.WorksheetFunction.StDev(stdArr)‘pass the list to the Standard

We then store the standard deviation in the column #6. Notice how the variable displayRow is used to refer-
ence the row and a fixed number is used for the column. The column number stays constant whereas the
row number increases as we go through the different days of data. The next few lines of code is the adap-
tive algorithm. Notice how I determine the change in standard deviation from day to day. I take today’s
standard deviation and subtract the previous SD (standard deviation) and then divide by today’s SD. This
results in either a positive or negative number. I then add 1 to this value and then multiple by the previous
days length. If the SD goes up then the length goes up - if the SD goes down then the length goes down.

	 Cells(displayRow, 6) = stdDev
	 delta = 1
	 delta = (stdDev - prevStdDev) / stdDev + 1 ‘calculate the delta of the Std. Devs
	 length = length * delta ‘change the lookback length
	 length = Application.WorksheetFunction.Round(length, 0)
								 ‘we are working with whole numbers for lookback
	 Cells(displayRow, 7) = length ‘put the length variable in column 7
	 If (length < flr) Then length = flr ‘make sure our length is not too short
	 If (length > clg) Then length = clg ‘make sure our length is not too long

Now that we know the value of the look back or N, we can set up our loop to look back in time to attain the
highest high and lowest low values that will become our buy and sell stops. Again we know ahead of time
how many days or iterations that we will need to look back, so we can use a for-next loop.

	 hh = 0
	 ll = 999999
	 For k = i - (length - 1) To i‘start at the current day and look back lenght period
		 If (myHigh(k) > hh) Then hh = myHigh(k) ‘get the highest high length lookback
		 If (myLow(k) < ll) Then ll = myLow(k) ‘get the lowest low length lookback
	 Next k
	 Cells(displayRow, 8) = hh ‘put the highest high on the sheet in column 8
	 Cells(displayRow, 9) = ll ‘put the lowest low on the sheet in column 9

Once we loop back N-days we can store the highest/lowest high/low values in column 8 and 9 respectively.
If you are unaccustomed on how these loops work, just send me an email and I will give you a quick tuto-
rial. The next lines of code is really the meat of the order generation and soon to be back testing software.

Lets see if a trade has occurred! Each iteration of a loop signifies a day of data, so we start at the end of the
day with a new buy and sell stop. We also set a temporary flag (stoppedOut) to determine if we get stopped
out of a trade.

	 stoppedOut = 0
	 buyStop = hh

251A publication of Futures Truth™ Co.

Issue #3/2007

Using Excel’s Visual Basic to Test & Trade Your System - Part 1

	 sellStop = ll

First off we check to see if we our protective stop is closer to the market than our reversal stop. Here is what
happens if have a long position: check to see if the next bars (i is the current bar index so i + 1 would be
the next bars index) low price is below or equal to our protective stop and our protective stop is closer than
our reversal sell stop. If it is then we change our pos variable to 0 (flat) and set our price to our protective
stop price. We do need to check to see if the market gapped through our protective stop. This is done by
comparing our price with the open price of the next bar. If the open price is below our protective stop we
then reassign price to the open of the next bar. Since we are exiting a long position, we know there will be
profit/loss associated with this trade. We take the price that we got out of the trade and subtract the entry
price of the trade. If the price is above the entry price then we have a profit, else we have a loss. We then
multiply the difference by the big point value to get the P/L in dollars. We then set the stoppedOut flat to 1
or true. We put the P/L in column 13.

	 If pos = 1 And myLow(i + 1) <= longLiqPrice And longLiqPrice > sellStop Then
		 pos = 0
		 price = longLiqPrice
		 If (myOpen(i + 1) < price) Then price = myOpen(i + 1)
		 trdProfit = (price - entryPrice) * bigPointValue
		 Cells(displayRow + 1, 13) = trdProfit ‘put trade profit in column 13
		 stopPrice = 0
		 stoppedOut = 1
 End If

Just the opposite is done to check for the short side. We check the next days high against the protective stop
and make sure the protective stop is closer than the buy reversal stop. We compare the next bars open with
the protective stop to check for a gap opening. We also change the pos to 0 for flat and set the stoppedOut
flag to 1 or true.

	 If pos = -1 And myHigh(i + 1) >= shortLiqPrice And shortLiqPrice < buyStop Then
		 pos = 0
		 price = shortLiqPrice
		 If (myOpen(i + 1) > price) Then price = myOpen(i + 1)
		 trdProfit = (entryPrice - price) * bigPointValue
		 Cells(displayRow + 1, 13) = trdProfit ‘ put trade profit in column 13
		 stopPrice = 99999
		 stoppedOut = 1
	 End If

Now if we had a position and the buy reversal was closer to the market than the protective stop or we were
flat, then we check to see if our buy stop was hit by comparing the next days high with the buy stop. If the
high is greater then we assign our price to either the buy stop or the open of the next bar. We also need to
check if we closed out an existing position and if so calculate the P/L.

	 If (pos <> 1 And myHigh(i + 1) >= hh And stoppedOut = 0) Then
		 price = hh
		 If myOpen(i + 1) > price Then price = myOpen(i + 1)

252A publication of Futures Truth™ Co.

Issue #3/2007

Using Excel’s Visual Basic to Test & Trade Your System - Part 1

		 longLiqPrice = price - protStop
		 If (pos = -1) Then
			 trdProfit = (entryPrice - price) * bigPointValue
			 Cells(displayRow + 1, 13) = trdProfit ‘ put trade profit in column 13
		 End If
		 pos = 1
	 End If

Now we check to see if our sell stop was hit, if we are not already short. Again we calculate our P/L based
on if were long coming into the new trade. Also, I forgot to mention, we go ahead and calculate our new
protective stop based on our new entry price and put this information into the shortLiqPrice/longLiqPrice
variable.

	 If (pos <> -1 And myLow(i + 1) <= ll And stoppedOut = 0) Then
		 price = ll
		 If myOpen(myOpen(i + 1)) < price Then price = myOpen(i + 1)
		 shortLiqPrice = price + protStop
		 If (pos = 1) Then
			 trdProfit = (price - entryPrice) * bigPointValue
			 Cells(displayRow + 1, 13) = trdProfit ‘put trade profit in column 13
		 End If
		 pos = -1
	 End If

We have checked for trades for today and calculated our new positions and any P/L. Now we put our new
information into the corresponding columns. Column 10 is assigned our position, Column 11 our entry
price and Column 12 our protective stop price.

	 If Cells(displayRow + 1, 3) <> “” Then
		 Cells(displayRow + 1, 10) = pos
		 Cells(displayRow + 1, 11) = price
		 If (pos = 0) Then Cells(displayRow + 1, 12) = 0
		 If (pos = 1) Then Cells(displayRow + 1, 12) = longLiqPrice
		 If (pos = -1) Then Cells(displayRow + 1, 12) = shortLiqPrice
		 If (pos <> 0) Then entryPrice = price
	 End If

Done with the day so now let’s increment the data array and cells indices. The keyword loop branches pro-
gram flow back to the do-while statement and we start a new day.

	 i = i + 1 ‘main array counter
	 displayRow = displayRow + 1
Loop

We are now sitting on the last row of data. Cells(displayRow + 1,1) (the date column) is blank therefore sig-
nifying the end of the data. Now we have all the information that we need to display the next bar’s orders.
If we are flat we put “Buy Tomorrow at” in orderString1 and “SellShort Tomorrow at” in orderString2.

253A publication of Futures Truth™ Co.

Issue #3/2007

Using Excel’s Visual Basic to Test & Trade Your System - Part 1

We put the respective stop prices in orderPrice1 and orderPrice2. We also put the order information 1 row
below the last line of data in columns 2 and 3. The orderStrings and orderPrices will be passed back to the
user dialog.

If (Cells(displayRow + 1, 1) = “”) Then
	 If (pos = 0) Then
		 orderString1 = “Buy Tommorrow at : “
		 orderString2 = “SellShort Tomorrow at : “
		 orderPrice1 = hh
 		 orderPrice2 = ll
		 Cells(displayRow + 1, 2) = “Buy Tomorrow at : “
		 Cells(displayRow + 2, 2) = “SellShort Tomorrow at : “
		 Cells(displayRow + 1, 3) = hh
		 Cells(displayRow + 2, 3) = ll
	 End If

If we are short then we only put “Buy Tomorrow at : “ in orderString1 and into the row following the last
line of data. We then calculate the current OTE and put that into the lastPL variable. We compare the cur-
rent protective stop to the reversal sell stop. If the protective stop is closer we then change the orderString1
to “Liq Short Tomorrow.” OrderPrice1 is then loaded with either the lowest low value or the protective stop
- whichever is closer.

	 If (pos = -1) Then
		 Cells(displayRow + 1, 2) = “Buy Tomorrow at : “ ‘Put the order in the last row
		 orderString1 = “Buy Tomorrow” ‘Put the order in the order string holder
		 If hh <= shortLiqPrice Then
			 Cells(displayRow + 1, 3) = hh
		 Else
			 Cells(displayRow + 1, 3) = shortLiqPrice	 ‘Put the order in the last row
			 orderString1 = “Liq Short Tomorrow” ‘Put the order in the order string holder
			 Cells(displayRow + 1, 2) = “Liq Short Tomorrow”
		 End If
		 orderPrice1 = Cells(displayRow, 3)
		 lastPL = (entryPrice - myClose(i1)) * bigPointValue
	 End If

If we are long we go through the same process. However, in this case we dealing with selling short or liqui-
dating a long position.

	 If (pos = 1) Then
		 Cells(displayRow + 1, 2) = “SellShort Tomorrow at :”‘Put the order in the last row
		 orderString2 = “SellShort Tomorrow” ‘Put the order in the order string holder
		 If ll > longLiqPrice Then
			 Cells(displayRow+1, 3) = ll
		 Else
			 Cells(displayRow+1, 3) = longLiqPrice	 ‘Put the order in the last row
			 orderString2 = “Liq Long Tomorrow” ‘Put the order in the order string holder

254A publication of Futures Truth™ Co.

Issue #3/2007

Using Excel’s Visual Basic to Test & Trade Your System - Part 1

			 Cells(displayRow+1, 2) = “Liq Long Tomorrow”‘
		 End If
		 orderPrice2 = Cells(displayRow+1, 3)
		 lastPL = (myClose(i) - entryPrice) * bigPointValue
	 End If
 End If
End Sub

Well that’s it for the first part. Keep going through the logic until you understand it. If you do come across
something you don’t understand, drop me an email at gpruitt@futurestruth.com. This code could be stream-
lined a lot more than what is presented. I wanted to be as elaborate as possible in my code to help with read-
ability. Also I have not yet discussed the development of the Dynamic BreakOut dialog nor the code that goes
along with it. I just wanted to present the software and an overview of how I put the program together. Feel
free to take the code and modify or expand it. In the next issue I will delve into how the dialog box was de-
signed and the associated VB code. We will also get closer to developing a generic back tester.

255A publication of Futures Truth™ Co.

Issue #4/2007

Making Visual Basic For Excel Test Your Trading Ideas - Part 2

In the last installment of George’s Corner we programmed an order generator for the Dynamic Break Out
system. In this Corner, we will use the concepts from that program and develop a universal back tester.
This back tester will be a beta version (1.0) and will simply be the backbone of what will evolve into a
somewhat sophisticated software application. The order generator program was designed specifically for
the DBS system. However, changing it to
generate signals for a different algorithm
would not be that difficult. In fact we will
be using a good portion of that code in our
“System Tester Vers. 1.0”.

I have programmed all of the subroutines into a single module to help reduce complexity. Before we start,
I suggest downloading the code, printing it out and going through it as you read this George’s Corner.
You can download the code at ftp://www.FuturesTruth.com/pub/SystemTester.xls. The Dim statements
at the top of the program are outside any of the subroutines and their associated headers. By dimension-
ing these variables here, we are forcing them to have global scope. This programming term simply means
that all of the different subroutines in the module will have access to the values that are held in these
variables. If I am in the Buy subroutine and I need to know what my current market position is, I simply
evaluate the marketPosition variable. If I hadn’t put these variables outside all of the subroutines and
made them global, then they would not be accessible to all of the subroutines. They would only be acces-
sible to the subroutine in which they were defined and to those subroutines in which the variable is passed
as an argument. Since this new programming consists of multiple subroutines, unlike our order generator,
we needed certain variables visible to most of the subroutines. Making variables global does come at a
cost of memory, but with this little program it won’t make any difference. You may recognize some of the
variables from the Dynamic Break Out 1.1 code. The data arrays declarations are also outside the main
subroutine module. You will also notice some global variables like totProfit, maxDD, perCentWins,
numTrades and others. These are the variables that we will use to load some simple performance met-
rics.

Dim stdArr(29), myDate(500), myHigh(500), myLow(500), myOpen(500), myClose(500) As
Double
Dim equityStream(500) As Double
Dim myVal1, myVal2, myVal3, myVal4, myVal5 As Double
Dim marketPosition, entryPrice, executionCount, entryBar As Integer
Dim myBigPointValue, myMinTick, rampUp As Double
Dim totProfit, maxDD, perCentWins, numTrades, numWins, numLosses, commsn As Double

There are a total of six different subroutines. This six subroutines make up the System Tester program.
At this point you maybe asking why not simply use one huge subroutine like we did in the order genera-
tor instead of many smaller ones? This question can be answered with one word, modularity. Modularity
cuts down on redundant code. Every time we close out a trade we need to calculate the profit or loss,

Download the code used in George’s Corner at
ftp://www.FuturesTruth.com/pub/SystemTester.xls.

256A publication of Futures Truth™ Co.

Issue #4/2007

Making Visual Basic For Excel Test Your Trading Ideas - Part 2

number of wins and losses, cumulative profit and total trades. There are four different times we must do
this. These times are when we:

	 	 1.)	 liquidate long position
	 	 2.)	 liquidate a short position
	 	 3.)	 reverse a long position and go short
	 	 4.)	 reverse a short position and go long

In our code we would need to copy/paste the same code four different times to calculate the performance
metrics of closing out a trade. Or we could simply create one CalcTradeResults subroutine and call it
four times. I like the latter a whole bunch more.

The first subroutine that we come across is the main subroutine. It is called SystemTester and as in
similar fashion as the DBSSub subroutine we pass information concerning the market being tested to it.
Since we are using multiple subroutines and global variables we don’t need to pass as many arguments as
we did in the DBSSub. Here we are simply passing the BigPointValue and MinTick of the market be-
ing tested and the amount of rampUp data needed to generate a trade signal.

			 Sub SystemTester(BigPointValue, MinTick, rampUp)

The next few lines initiate some of the global variables that we will use later on in the program. You will
probably recognize the Do While loop where we are reading the data from the worksheet into our data ar-
rays if you are following along with a print out of the logic.

stp = 1
lmt = 2
mkt = 3
executionCount = 1
marketPosition = 0
myBigPointValue = BigPointValue
myMinTick = MinTick
commsn = 100 / myBigPointValue
totProfit = 0
maxEquityHigh = -9999999
numTrades = 0

We then encounter another loop that runs through each day of data. This is where we would program our
trading system. I have created a very simple system to help us test and debug our code. This system
buys tomorrow at today’s high on a stop if the today’s close is greater than the previous day’s close. It
sells tomorrow at today’s low if the close of today is less than the prior day close. A $2000 protective
stop/ profit objective is also utilized. Yeah - you can probably already tell this is going to be a big loser.
But right now we don’t care, we just need something that generates a bunch of trades so we can put our
software to the test. Some of these subroutine calls have very similar names as other testing platforms
out there. This was by design. I have always liked the keywords Buy to initiate a long position, Sell to
initiate a short position, ExitLong to exit a long position and ExitShort to exit a short position. I am not
to keen on how TraderStation™ has changed these names in there version 7 and above. You can tell who

257A publication of Futures Truth™ Co.

Issue #4/2007

Making Visual Basic For Excel Test Your Trading Ideas - Part 2

they wanted their audience to be. SellShort and BuyToCover - gimme a break. This little snipped of
code tells us how to reference prior days (myClose(i) > myClose(i-1)) and the arguments we need to
pass to our subroutines.

	 If myClose(i) > myClose(i - 1) Then Call Buy(“Go-Long”, myHigh(i), stp, i)
	 If myClose(i) < myClose(i - 1) Then Call Sell(“Go-Short”, myLow(i), stp, i)

	 Call ExitLong(“Long-Liq”, entryPrice - 2000 / myBigPointValue, stp, i)
	 Call ExitShort(“Short-Liq”, entryPrice + 2000 / myBigPointValue, stp, i)
	 Call ExitLong(“Long-Prof”, entryPrice + 2000 / myBigPointValue, lmt, i)
	 Call ExitShort(“Short-Prof”, entryPrice - 2000 / myBigPointValue, lmt, i)

If you want to compare today’s high with the high 5 days ago, you would simply subtract five from our
array index (i). For example lets say we want to check to see if today’s high is greater than the high 5
bars back. The code that would do this is: if myHigh(i) > myHigh(i-5) then do something. When we
call our Buy/Sell and ExitLong/Short we must do so with information concerning where we want to enter
or exit.

The Buy/Sell subroutines need to have the following information passed to it in this exact order:
	
	 	 entry signal name in double quotes - any name can be used
	 	 buy/sell level
	 	 order type - stp, lmt or mkt - use these variable names
	 	 current bar - simply pass the current value of i

If you don’t pass the correct information in the correct order, then the program simply will not work.

	 The ExitLong/Sell subroutines need to have basically same information in the same order:
		
	 	 exit signal name in double quotes - any name can be used
	 	 buy/sell level
	 	 order type - stp, lmt or mkt - use these variable names
	 	 current bar - simply pass the current value of i

If you can manipulate the data arrays by changing their indices and call a Buy/Short and ExitLong/Short
subroutine then you can easily test your trading ideas. I have done the hard work for you. However,
since you may want to know what is going on behind the scenes, and I hope you do, we will go over each
of these subroutines. Again remember this is simply a backbone and as of yet not very sophisticated. You
could take the ball and run with this little bit of code and make something sophisticated, or simply wait
until the next George’s Corner. Right now we haven’t programmed any indicators such as a moving aver-
age, Bollinger band, Keltner channel, rsi, etc.,. We may do this in the next issue. Also we are still work-
ing with the same old data as we did with the order generator program and I haven’t programmed any
fancy looking reports. They may also be programmed later.

Let’s first take a look at the Buy subroutine and see what it does:

258A publication of Futures Truth™ Co.

Issue #4/2007

Making Visual Basic For Excel Test Your Trading Ideas - Part 2

Sub Buy(sigName, trdPrice, orderType, index)
Dim tradeProf, price As Double

price = 0

The next snippet of code differentiates between order types and checks the price levels against the order
prices. If the order is a limit and we are looking to buy then we check the low price of day against the order
price. If the low of the day is less than the price we fill the order at the order price. We then check against
the open price to see if there was a gap opening below our limit. If there was we then fill the order at the
open price. We look at the high of the day to check our buy stop level. If the high exceeds the stop level,
then we know we were filled. We first assume we were filled at our stop level and then we check the open
of the day to see if the market gapped up through our price. The other type of order is simply a market
order and we fill that at the open price.

If (marketPosition <> 1) Then
	 Select Case orderType
		 Case 1
		 If myHigh(index + 1) >= trdPrice Then 		 ‘Limit Order
			 price = trdPrice
 		 If (myOpen(index + 1) > trdPrice) Then price = myOpen(index + 1)
		 End If
		 Case 2
		 If myLow(index + 1) <= trdPrice Then		 ‘Stop Order
 			 price = trdPrice
			 If (myOpen(index + 1) < trdPrice) Then price = myOpen(index + 1)
		 End If
		 Case 3
			 price = myOpen(index + 1)			 ‘Market Order
	 End Select

If price <> 0 then we know that we were filled. See above where we set price equal to 0. The only way our
price changes is if we in fact did get filled. If we get filled we then select sheet2 in our workbook and fill
the cells with the trade information. We put date of the trade in column 1, the name of the signal in column
2 , the entry price in column 3 and the profit or loss, if any, in column 4.

If (price <> 0) Then
	 Sheets(“Sheet2”).Select
	 entryBar = index + 1
	 numTrades = numTrades + 1
	 executionCount = executionCount + 1
	 Cells(executionCount, 1) = myDate(index + 1)	 See how we put the values in the different
	 Cells(executionCount, 2) = sigName		 columns.

Here we call the CalcTradeResults subroutine to calculate the results of our entry. We only do this if we
are currently in a short position.

259A publication of Futures Truth™ Co.

Issue #4/2007

Making Visual Basic For Excel Test Your Trading Ideas - Part 2

	 If (marketPosition = -1) Then
		 Call CalcTradeResults(marketPosition, entryPrice, price, tradeProf)
	 End If
	 entryPrice = price
	 Cells(executionCount, 4) = tradeProf * myBigPointValue
	 Cells(executionCount, 3) = entryPrice
	 marketPosition = 1	 Assign our entry price and change marketPosition to 1 - long.
 End If
 End If

The Sell subroutine does basically the same thing, but we check our order price levels differently when
we are looking to sell. If we are looking to go short and we wish to enter on a limit order, we compare the
high of the day against our limit price. If the high of the day exceeds the sell limit then we know we were
filled. We don’t know, until we check, if we were filled at the opening on a gap up. Sell stops are below
the market so we check the low and open of the day against the stop price to see if we should have been
filled. This is basically the only difference between the buy and sell subroutines.

 If (marketPosition <> -1) Then
 Select Case orderType
 Case 1
 If myLow(index + 1) <= trdPrice Then
 price = trdPrice
 If (myOpen(index + 1) < trdPrice) Then price = myOpen(index + 1)
 End If
 Case 2
 If myHigh(index + 1) >= trdPrice Then
 price = trdPrice
 If (myOpen(index + 1) > trdPrice) Then price = myOpen(index + 1)
 End If
 Case 3
 price = myOpen(index + 1)
 End Select

The ExitLong subroutine isn’t really that different than the Sell Subroutine. Again we must differenti-
ate between order types and put the trade information into the different columns. Here we do change our
market position to 0 or flat. In fact, if we wanted to streamline our code, we could combine the ExitLong
and Sell subroutines into one subroutine. I made the separate routine to mimic the subroutine calls of
other testing platforms. The same goes for the ExitShort subroutine.

The last subroutine that we need to talk about is CalcTradeResults(). This subroutine is called from
each of the four trade entry/exit routines and keeps track of the performance of the trading system. The
only information this routine needs to know is the current position, entry price and exit price. It takes
this information, processes it, updates the global performance variables and also returns the current trades
profit or loss in the tradeProf variable. TradeProf is passed to the subroutine and is modified and
passed back to the calling program. All variables are passed by reference to subroutines or functions in
Visual Basic. This simply means the values of these variables can be changed in the subroutine and these
changes are reflected in the calling subroutine.

260A publication of Futures Truth™ Co.

Issue #4/2007

Making Visual Basic For Excel Test Your Trading Ideas - Part 2

Sub CalcTradeResults(pos, entryPrice, exitPrice, tradeProf)

	 If pos = 0 Then Return	 ‘Return and make no changes if we are flat

	 If pos = 1 Then
		 tradeProf = exitPrice - entryPrice - commsn
	 Else
		 tradeProf = entryPrice - exitPrice - commsn
	 End If
	 If (tradeProf >= 0) Then
		 numWins = numWins + 1
	 Else
		 numLosses = numLosses + 1
	 End If
	 totProfit = totProfit + tradeProf

	 If (totProfit > maxEquityHigh) Then maxEquityHigh = totProfit
 	 If (maxEquityHigh - totProfit > maxDD) Then maxDD = maxEquityHigh - totProfit

End Sub

If we come into this subroutine with a long position we then subtract our exit price from our entry price.
If our exit is above our entry we then know we made a profit. If we are short we then subtract our entry
price from our exit price, just the opposite of what we did for a long trade. If our entry is above the exit
then the short trade was profitable. Once we calculate the trade profit, we then calculate the total overall
profit, number of wins, number of losses, and maximum draw down. And that’s basically all there is to
the System Tester program. You can download the code directly from Futures Truth website and start
playing around with it. Remember, to run the program you go under Tools in the Excel Menu, select
Macros and highlight the Macro submenu and then select RunSystemTester. You will need to invoke
the Visual Basic editor under the tools menu to be able to edit the program. In the next and last install-
ment of developing this system tester we will incorporate some indicators and introduce several different
systems and improve on the performance reports.

261A publication of Futures Truth™ Co.

Issue #5/2007

Making Visual Basic For Excel Test Your Trading Ideas - Part 3
Expanding Our Testing Capabilities With Indicators

Now that we have the core testing engine programmed let’s go ahead and program a handful of indicators
into subroutines so we can use them in our testing. I got tired of using the same old data that was used in
the last two installments, so I have populated the latest SystemTester.xls workbook with November Crude
Oil data. I only picked five popular indicators to include in our Visual Basic code, but once you see how
they are programmed you should have no problem adding more.

One of the easiest indicators to program is the simple moving average so we will start with that one. As
you know you can calculate the moving average on different prices. The most popular of course is the
close. Since we want to make our indicators as flexible as possible, we should allow the user to pass any
price stream (open, high, low or close)
to our subroutine and return the moving
average of whatever length they choose.
Visual Basic is very flexible language
and therefore great for the inexperienced
programmer. Take a look at the following code to see how simple the process is of adding an indicator to
our program.

Function Average(dataList, length, index)

Dim i As Integer
Dim sum, As Double

For i = index - (length - 1) To index
 sum = sum + dataList(i)
Next i
Average = sum / length

End Function

Since we are only need one value passed back to the calling subroutine we can simply use a Function.
Functions are similar to subroutines in that information is passed back and forth from the calling program
and sub program. The main difference between these two subprograms is in how you invoke them. With
a subroutine you must use the keyword Call prior to the name of the subroutine, whereas a function is
accessed by simply using its name as and parameter list. For example, to use the Average function we
would use the following snippet of code:

myAverage = Average(myClose,14,i)

Here we simply assign the 14 day moving average of closing prices to the myAverage variable. This

Download the code used in George’s Corner at
ftp://www.FuturesTruth.com/pub/SystemTester.xls.

262A publication of Futures Truth™ Co.

was done by using the function name and the parameters necessary to provide the information that is
needed. The function header Function Average(dataList, length, index) provides the name of
the function (Average) and the list of arguments it needs to do the moving average calculation. I used
the variable dataList so that different data arrays could be passed to the function. We could call the
function with myClose, myHigh, myLow or myOpen data arrays. Somewhere in the body of the
function, the name of the function must be used and assigned the result of a calculation. In the example
above we Dim dimension two variables i and sum. These are the only two variables we will need to
complete our moving average calculation. Since we will need to look back over n days to sum up the
prices, a for loop will be used. The sum variable will act like an accumulator and sum up the prices for
the last n days. When the loop terminates the sum will be divided by the number of days that we have
looked back and the quotient will be assigned to the name of our function - Average. Thats all there is
to this simple indicator. You could use this template to create an exponential or weighted moving aver-
age indicator or any other indicator that has just one output. Here is a little more complicated indicator
that can be programmed as a function.

Function RSI(dataList, length, index)

Dim i As Integer
Dim diff1, diff2, upSum, dnSum

upSum = 0
dnSum = 0

If rsiVal1 = 0 And rsiVal2 = 0 Then ‘seed the original RSI Value
 For i = index - (length - 1) To index
 If dataList(i) > dataList(i - 1) Then
 diff1 = dataList(i) - dataList(i - 1)
 upSum = upSum + diff1
 End If
 If dataList(i) < dataList(i - 1) Then
 diff2 = dataList(i - 1) - dataList(i)
 dnSum = dnSum + diff2
 End If
 Next i
 rsiVal1 = upSum / length
 rsiVal2 = dnSum / length
Else
 If dataList(index) > dataList(index - 1) Then
 diff1 = dataList(index) - dataList(index - 1)
 upSum = upSum + diff1
 End If
 If dataList(index) < dataList(index - 1) Then
 diff2 = dataList(index - 1) - dataList(index)
 dnSum = dnSum + diff2
 End If
 rsiVal1 = (rsiVal1 * (length - 1) + upSum) / length

Issue #5/2007

Making Visual Basic For Excel Test Your Trading Ideas - Part 3

263A publication of Futures Truth™ Co.

Issue #5/2007

 rsiVal2 = (rsiVal2 * (length - 1) + dnSum) / length
End If
If rsiVal1 + rsiVal2 <> 0 Then
 RSI = (100 * (rsiVal1)) / (rsiVal1 + rsiVal2)
Else
 RSI = 0
End If

End Function

This RSI function is a little more complicated because the indicator initially needs to be calculated with
the use of simple moving average. Here we once again pass the data array to the function because the
RSI can be calculated on any data stream.

upSum = 0
dnSum = 0

If rsiVal1 = 0 And rsiVal2 = 0 Then ‘seed the original RSI Value
 For i = index - (length - 1) To index
 If dataList(i) > dataList(i - 1) Then
 diff1 = dataList(i) - dataList(i - 1)
 upSum = upSum + diff1
 End If
 If dataList(i) < dataList(i - 1) Then
 diff2 = dataList(i - 1) - dataList(i)
 dnSum = dnSum + diff2
 End If
 Next i
 rsiVal1 = upSum / length
 rsiVal2 = dnSum / length
Else

rsiVal1 and rsiVal2 are global parameters (not local to just this function) and if they are equal to zero
this must mean we have entered this function for the first time. Once we change these values they will
be the same until they are changed again. Just to refresh your memory on the RSI, this indicator first av-
erages the magnitudes between the positive and negative differences between today’s close (open, high,
low) and yesterday’s close. These values will be positive since we are simply looking at the magnitudes
of the differences. The RSI is then calculated by dividing the average magnitude of up closes by the
sum of the average magnitude of up closes and the average magnitude of down closes. This quotient
is then multiplied by 100. This indicator oscillates from 0 to 100. After we initially calculate the RSI
(seed), we then use the last rsiVal1 and rsiVal2 to calculate the next value of the RSI.

 If dataList(index) > dataList(index - 1) Then
 diff1 = dataList(index) - dataList(index - 1)
 upSum = upSum + diff1
 End If

Making Visual Basic For Excel Test Your Trading Ideas - Part 3

264A publication of Futures Truth™ Co.

Issue #5/2007

 If dataList(index) < dataList(index - 1) Then
 diff2 = dataList(index - 1) - dataList(index)
 dnSum = dnSum + diff2
 End If
 rsiVal1 = (rsiVal1 * (length - 1) + upSum) / length
 rsiVal2 = (rsiVal2 * (length - 1) + dnSum) / length

First we calculate the most recent up or down close and then use a simplified moving average calculation to
come up with the most recent RSI value. We take the last value of rsiVal1 and multiply it my length -1
and then add the upSum and then divide this result by the length. This was Welles Wilder’s shortcut for
calculating averages before the computer era. RsiVal1 and rsiVal2 keep their values inside and outside
the RSI function because they were declared globally. Hence we can count on them having their last values
inside our function. Some times indicators can be more complex and require more than just one value to be
calculated. The Bollinger Band indicator is one that outputs two or three different values. The Bollinger
Band indicator calculates a moving average and one band above and one band below the average. The
distance between the bands and the average is based on the user defined multiple of the standard deviation
of the moving average. Most traders like to see one or two standard deviations above/below the moving
average line. These bands signify either support or resistance.

Sub BollingerBand(dataList, length, numDevs, avg, upBand, dnBand, index)

Dim i As Integer
Dim sum, sum1, myDev As Double

For i = index - (length - 1) To index

 sum = sum + dataList(i)
 sum1 = sum1 + dataList(i) ^ 2

Next i

avg = sum / length

myDev = ((length * sum1 - sum ^ 2) / (length * (length - 1))) ^ 0.5

upBand = avg + myDev * numDevs
dnBand = avg - myDev * numDevs

End Sub

Here we use a subroutine instead of a function. We will want three outputs from this subroutine: avg,
upBand and dnBand. The subroutine will need to know the price stream, the number of bars to look back
and the number of standard deviations. This subroutine uses a for loop to calculate the sum of prices, and
the sum of the prices squared. Again we could be using the open, high, low or close data stream in this
loop. The myDev variable is assigned the standard deviation calculation based on the length or sample
size of the data. Once this variable is changed it stays that way until it is changed again, so we can access

Making Visual Basic For Excel Test Your Trading Ideas - Part 3

265A publication of Futures Truth™ Co.

Issue #5/2007

the value in our main loop. Just for a little more practice in coding these indicators the Stochastic pro-
gramming is also included in the workbook.

If you run the SystemTesterV1.2 module, the values of these indicators are printed out in columns 8
through 14 on “Sheet1”. This was accomplished by this following code:

 Sheets(“Sheet1”).Select ‘Select Sheet1 to access the data
 Cells(i + baseRow, 8) = upBand
 Cells(i + baseRow, 9) = dnBand
 Cells(i + baseRow, 10) = simpleAvg
 Cells(i + baseRow, 11) = rsiVal
 Cells(i + baseRow, 12) = stoK
 Cells(i + baseRow, 13) = stoD

 Cells(i + baseRow, 14) = slowD

A simple Bollinger Band system was programmed to demonstrate the use of these indicators.

	 If myClose(i) > upBand Then Call Buy(“Go-Long”, myClose(i), mkt, i)
 	 If myClose(i) < dnBand Then Call Sell(“Go-Short”, myClose(i), mkt, i)
 	 if myClose(i) < avg Then Call ExitLong(“LongLiq”,myClose(i),mkt,i)
	 if myClose(i) > avg Then Call ExitShort(“ShortLiq”,myClose(i),mkt,i)

If the close of the day is above the top Bollinger band then we enter the market on the close. I had to
change a little bit of code to allow market orders to be executed on the close of the day. This change has
been reflected in latest version of the SystemTester. If the close of the day is less than the bottom Bol-
linger then we enter the market on the close. If we do get into a long position and the market then retraces
back and closes below the moving average we then exit our long position. The same works for short posi-
tions. We exit short when the market moves back up through the moving average.

In the next installment, we will add the ability to have multiple sheets of data and have the program test all
of them in one run. As usual, just go to our website to download SystemTesterV1.2.xls.

If you have any questions on this article or code it contains,
feel free to contact George directly at GPruitt@FuturesTruth.com.

Making Visual Basic For Excel Test Your Trading Ideas - Part 3

266A publication of Futures Truth™ Co.

Issue #1/2008

Making Visual Basic For Excel Test Your Trading Ideas - Part 4
Putting the Thermostat System Into Our

Visual Basic Testing Platform

I developed the Thermostat system back in 2001 and published it in Building Winning Trading Systems
with TradeStation. This system is a combination of two systems: a short term swing system and a trend
follower. The trend following mechanism is simply a 2 standard deviation break out (Bollinger Band) of
a 50 day moving average. The swing system is a simple open range breakout. What makes this system
different than others is its ability to switch from one system to the other. The function that causes the sys-
tem to switch modes is the Choppy Market Index. This index tells us what mode the market is currently
exhibiting: choppy or trending. This formula is quite simple – we divide the actual distance the market
has traveled for the past thirty days by the distance that market has wandered for the past thirty days.

Choppy Market Index = ABS(Close – Close(29))/(Highest(High,30)-Lowest(Low,30)) * 100

If the distance between today’s close and the close of 30 days ago is less than 20% of the distance between
the highest high and the lowest low of the past 30 days then I feel the market is demonstrating a swinging
motion. On the other hand if the market has resulted in a gain or loss of 20% or more of the highest high
– lowest low range, then I feel the market is in a trend mode. If you want to simply work with decimals
you can eliminate the 100 multiplier. This I have done in the trading logic.

If the Choppy Market Index (CMI) is less than 20%, then we will utilize the open range break out
(ORBO) mechanism. The ORBO also incorporates pattern recognition. While in choppy mode we can
have either a buy easier or sell easier day. These types of days are determined by comparing today’s clos-
ing price to the key of the day (KOD). The KOD or day trader’s pivot point is calculated by simply divid-
ing the sum of today’s high, low, and close by three (H + L + C)/3. If the close is above the KOD then
we have a sell easier day (SAD). In other words the market closed nearer its high and we are expecting
a down day tomorrow. If the close is below or equal to the KOD, then we have a buy easier day (BAD).
These patterns are pretty self explanatory. On BAD days we will make it easier to buy than sell and, on
SAD days sells will be easier than buys. On BAD days we will buy at the open + 50% of the ten day
average true range (10ATR) and sell short at the open – 75% of 10ATR. On SAD days we will just do the
opposite – buy at the open + 75% of the 10ATR and sell short at the open – 50% of the 10ATR. The weak-
ness with break out systems is that they sometimes get whipsawed in extremely choppy markets. I tried to
prevent this by utilizing a Trend Lock Point (TLP). Many times we will have a gap down that continue a
down trend and then the market attempts to fill the gap. A pure break out system will be tempted to buy as
the market moves up off of the open even though the market is still showing weakness. The TLP attempts
to keep the system in synch with the current short term trend. If the buy entry stop is below the three day
average of low prices, I move the buy stop up to this point. If the sell stop is above the three day average
of high prices, I move the sell stop down to this point. In other words:

	 	 BuyStop = MAX(BuyStop,Average(Low,3))

	 	 SellStop = MIN(SellStop,Average(High,3))

If a position is initiated a three 10ATR protective stop is invoked. This stop is rarely hit.

267A publication of Futures Truth™ Co.

Making Visual Basic For Excel Test Your Trading Ideas - Part 4

Issue #1/2008

If the CMI determines that we are in a trending market, then the system switches to the 50-day Bollinger
break out. Long positions are initiated at the upper Bollinger band and short positions are put on when the
market moves past the lower Bollinger band. While we are in a trending market the three 10ATR stop is
not utilized. Liquidations of positions take place at the 50-day moving average. If we enter a long posi-
tion at the upper Bollinger band, we then will liquidate once the market moves down past the 50-day mov-
ing average. Short positions are liquidated when the market moves above the 50-day moving average.

That’s all there is to this system. Since release the system has been very successful even though it did
surpass its worse draw down in late 2006. I thought this would be a good system to use as a tutorial for
programming in our system tester software.

I have updated the SystemTester to version 1.3. The new version includes the Highest/Lowest functions
and I have divided the program into different areas by using comments. You now know where to declare
your variables and put your system logic. You can download the ThermostatTest Excel spreadsheet from
our website.

Now that we know how the system works, let’s see how easy it is to program into our SystemTester. I will
only include the necessary logic for the system to help reduce space. First off we will declare the neces-
sary variables that we will need for Thermostat.

Dim cmiVal As Double
Dim hh, ll, trendLokBuy, trendLokSell, swingBuyPt, swingSellPt, trendBuyPt, trendSellPt As Integer
Dim choppyPer1, choppyPer2, keyOfDay, protStopAmt As Double
Dim buyEasierDay, sellEasierDay, bollAvg As Integer

Many times I don’t know ahead of time what variables I will need so I make them up as I go along. You
will notice that I have dimensioned some of my variables as Integers and some as Doubles. If I need a
variable to have a fractional part, I will declare it as a Double. If I need a toggle, like the buyEasierday or
sellEasierDay or an entry/exit price I will usually dimension as an Integer. You could dimension every-
thing as Double if you like.

After the declaration (dimensioning) of the variables we move into the main trading loop and do the nec-
essary calculations for the Choppy Market Index (CMI).

choppyPer1 = 0.5
 	 choppyPer2 = 0.75

 	 hh = Highest(myHigh, 30, 0, i)
 	 ll = Lowest(myLow, 30, 0, i)

 	 cmiVal = Abs(myClose(i - 29) - myClose(i)) / (hh - ll)
	
Here we assign 0.5 and 0.75 to the first and second choppy percentage variables. We then invoke the
Highest and Lowest functions to determine the highest high and lowest low values for the past 30 days.

268A publication of Futures Truth™ Co.

Making Visual Basic For Excel Test Your Trading Ideas - Part 4

Issue #1/2008

 The cmiVal is calculated by dividing the absolute value of the close 30 days ago minus today’s close by
the difference between the highest high and the lowest low for the past thirty days.

trendLokBuy = Average(myLow, 3, i)
 	 trendLokSell = Average(myHigh, 3, i)

 	 buyEasierDay = 0
 	 sellEasierDay = 0

 	 keyOfDay = (myClose(i) + myHigh(i) + myLow(i)) / 3

 	 If (myClose(i) > keyOfDay) Then sellEasierDay = 1
 	 If (myClose(i) <= keyOfDay) Then buyEasierDay = 1

This snippet of code calculates the trendLokBuy and trendLokSell points. These values are determined
by calling the Average function using the myLow and myHigh data arrays. The next value to be calcu-
lated is the Key of the Day. This is calculated by dividing the sum of the day’s high, low and close by
three. We use this value to determine if the next day is going to be a buyEasierDay or a sellEasierDay. If
today’s close is greater than the Key of the Day, then we will setup for a sellEasierDay tomorrow. Con-
versely, if the market closes at or below the Key of the Day, then we will set up for a buyEasierDay.

If (buyEasierDay = 1) Then
 	 	 swingBuyPt = myOpen(i + 1) + Average(myTrueRange, 10, i) * choppyPer1
 	 	 swingSellPt = myOpen(i + 1) - Average(myTrueRange, 10, i) * choppyPer2
 	 End If
 	 If (sellEasierDay = 1) Then
 	 	 swingBuyPt = myOpen(i + 1) + Average(myTrueRange, 10, i) * choppyPer2
 	 	 swingSellPt = myOpen(i + 1) - Average(myTrueRange, 10, i) * choppyPer1
 	 End If

The buyEasier/sellEasier day only applies to the short term swing system so we can go ahead and calcu-
late the swingBuy/swingSell points once we determine what type of day has set up. If we have a bu-
yEasierDay, then the buy stop will be the Open of tomorrow plus 50% of the ten day average true range.
The sell stop will be calculated similarly but we will subtract 75% of the ten day average true range. The
buy and sell stops are calculated in the same manner on sellEasierDays; we simply flip the 50% and 75%.

Call BollingerBand(myClose, 50, 2, bollAvg, trendBuyPt, trendSellPt, i)

 	 If (cmiVal < 0.2) Then
 	 	 If marketPosition <> 1 Then Call Buy(“SwingBuy”, swingBuyPt, stp, i)
 	 	 If marketPosition <> -1 Then Call Sell(“SwingSell”, swingSellPt, stp, i)
 	 Else

 	 	 If marketPosition <> 1 Then Call Buy(“TrendBuy”, trendBuyPt, stp, i
 If marketPosition <> -1 Then Call Sell(“TrendSell”, trendSellPt, stp, i)

 	 End If

269A publication of Futures Truth™ Co.

Making Visual Basic For Excel Test Your Trading Ideas - Part 4

Issue #1/2008

Once we calculate the Bollinger Bands we can then start to place the orders. The BollingerBand subrou-
tine assigns the upper band to the trendBuyPt and the lower band to the trendSellPt. So, we now have our
trendBuy, trendSell, swingBuy, and swingSell price points. All we need to do now is figure out which
ones of these needs to be placed. We only place the swing stop orders in choppy market mode and this
occurs when the cmiVal drops below 0.2. If the cmiVal is greater than or equal to 20% we then place the
trending stop orders.

After the entry orders are placed we need to place our protective stops.

protStopAmt = 3 * Average(myTrueRange, 10, i)
 	 If marketPosition = 1 Then
 	 If signalName = “TrendBuy” Then Call ExitLong(“TrendLongEx”, bollAvg, stp, i)
 	 If signalName = “SwingBuy” Then Call ExitLong(“SwingLongEx”, entryPrice - protS-
topAmt, stp, i)
 	 End If

 	 If marketPositon = -1 Then
 	 If signalName = “TrendSell” Then Call ExitShort(“TrendShortEx”, bollAvg, stp, i)
 	 If signalName = “SwingSell” Then Call ExitShort(“SwingShortEx”, entryPrice +
protStopAmt, stp, i)
 	 End If

Notice how we tied our exit signals with our entry signals. If we have a long position and the signal name
that put us into that trade is a “TrendBuy” then we only exit with the “TrendLongEx” signal. The “Swing-
Buy/Sell” entries are tied to the “SwingLong/ShortEx” signals.

I have included two years of continuous crude oil in this spreadsheet that you can test on. Please play
around with the logic and plug in your own system and see if you can come up with a good system. Two
things that I want to change in the next revision, which will increase accuracy, are:

1.) Create a subroutine that determines which order is closest to the market and execute only that one.
Right now the system looks at the entries first and if the order is hit it will automatically execute, even
though the liquidation order might be closer.

2.) Allow multiple entries on the same bar if we can determine with a high level of accuracy which oc-
curred first – the high or the low of the bar.

Also, here are the codes for the Highest and Lowest functions:

Function Highest(dataList, length, offset, index)
Dim i As Integer
Dim tempHH As Integer

 	 tempHH = 0
 	 For i = index - (length - 1 + offset) To index
 	 	 If (dataList(i) > tempHH) Then tempHH = myHigh(i)
 	 Next i
 	 Highest = tempHH

270A publication of Futures Truth™ Co.

Making Visual Basic For Excel Test Your Trading Ideas - Part 4

Issue #1/2008

End Function

Function Lowest(dataList, length, offset, index)
Dim i As Integer
Dim tempLL As Double

 	 tempLL = 999999
 	 For i = index - (length - 1 + offset) To index
 	 	 If (dataList(i) < tempLL) Then tempLL = myLow(i)
 	 Next i
 	 Lowest = tempLL

End Function

I will repeat the core logic of the Thermostat system so that you won’t need to extract it from the Visual
Basic code. Here it is in its entirety. I would make sure you fully grasped this before tweaking or pro-
gramming your own system.

Do While i < numRecords

 i = i + 1

 choppyPer1 = 0.5
 choppyPer2 = 0.75

 hh = Highest(myHigh, 30, 0, i)
 ll = Lowest(myLow, 30, 0, i)

 cmiVal = Abs(myClose(i - 29) - myClose(i)) / (hh - ll)

 trendLokBuy = Average(myLow, 3, i)
 trendLokSell = Average(myHigh, 3, i)

 buyEasierDay = 0
 sellEasierDay = 0

 keyOfDay = (myClose(i) + myHigh(i) + myLow(i)) / 3

 If (myClose(i) > keyOfDay) Then sellEasierDay = 1
 If (myClose(i) <= keyOfDay) Then buyEasierDay = 1

 If (buyEasierDay = 1) Then
 swingBuyPt = myOpen(i + 1) + Average(myTrueRange, 10, i) * choppyPer1
 swingSellPt = myOpen(i + 1) - Average(myTrueRange, 10, i) * choppyPer2
 End If
 If (sellEasierDay = 1) Then
 swingBuyPt = myOpen(i + 1) + Average(myTrueRange, 10, i) * choppyPer2
 swingSellPt = myOpen(i + 1) - Average(myTrueRange, 10, i) * choppyPer1
 End If

271A publication of Futures Truth™ Co.

Making Visual Basic For Excel Test Your Trading Ideas - Part 4

Issue #1/2008

 Call BollingerBand(myClose, 50, 2, bollAvg, trendBuyPt, trendSellPt, i)

 If (cmiVal < 0.2) Then
 If marketPosition <> 1 Then Call Buy(“SwingBuy”, swingBuyPt, stp, i)
 If marketPosition <> -1 Then Call Sell(“SwingSell”, swingSellPt, stp, i)
 Else

 If marketPosition <> 1 Then Call Buy(“TrendBuy”, trendBuyPt, stp, i)
 If marketPosition <> -1 Then Call Sell(“TrendSell”, trendSellPt, stp, i)

 End If

 protStopAmt = 3 * Average(myTrueRange, 10, i)
 If marketPosition = 1 Then
 If signalName = “TrendBuy” Then Call ExitLong(“TrendLongEx”, bollAvg, stp, i)
 If signalName = “SwingBuy” Then Call ExitLong(“SwingLongEx”, entryPrice - protSto-
pAmt, stp, i)
 End If

 If marketPositon = -1 Then
 If signalName = “TrendSell” Then Call ExitShort(“TrendShortEx”, bollAvg, stp, i)
 If signalName = “SwingSell” Then Call ExitShort(“SwingShortEx”, entryPrice + protSto-
pAmt, stp, i)
 End If

‘---------- End of System Logic - Do Not Change Next 2 lines -----------

 If (totProfit > maxEquityHigh) Then maxEquityHigh = totProfit
 If (maxEquityHigh - totProfit > maxDD) Then maxDD = maxEquityHigh - totProfit

‘--

Loop

Download the code used in George’s Corner at
ftp://www.FuturesTruth.com/pub/Thermostat.xls.

If you have any questions on this article or code it contains,
feel free to contact George directly at George@FuturesTruth.com.

272A publication of Futures Truth™ Co.

Issue #2/2008

Miscellaneous Ramblings

Could’ve , Would’ve , Should’ve . . .

Long side only commodity trading has been the hot topic for a few years now. Jim Rogers book of a few
years ago, Hot Commodities, either got this ball rolling or helped it along considerably. Many profession-
al money managers offer this type of product to their clients and even though they may have gone through
some draw down, the end result (especially for the past few months) has been quite good. I wanted to
see what the results of this type of trading would look like over the past 22 years so I used the Aberration
system as my guinea pig. I forced the system to just take the long signals and skip the shorts. Long trades
were liquidated at their normal exits. The following table shows performance from the long side only on
twelve different commodity markets.

 			 Avg Max in Last 12mn Trds % %Gain
 $PL $PL/Yr DrawDn $PL DrawDn /Yr %Wins TIM W:L /Mr+DD
Crude Oil 45830 2075 31780 10680 12120 4 52.3 46 1.5 5.9
Heating Oil 76390 3459 23906 12466 12818 4 53.7 43 1.9 13.3
Natural Gas 84530 4762 34940 -4730 6300 4 43.8 36 1.7 11.6
Soybeans 22795 1032 38395 14095 6915 3 41.3 33 1.3 2.6
Wheat 75 3 18013 7350 14725 2 39.2 26 1.0 0.0
Cotton 31315 1418 18485 -5175 7630 3 42.4 28 1.7 7.3
Rough Rice -10000 -511 23274 5174 1160 3 37.9 27 .8 -2.0
Corn 10863 492 12863 4075 3450 3 39.0 29 1.4 3.7
Sugar 6978 316 8434 2184 1142 3 45.0 33 1.2 3.5
Copper 66238 2999 22813 -5238 17063 3 43.4 38 2.1 12.0
Pork Bellies -9048 -410 25220 -1860 3840 3 37.1 28 .9 -1.5
Live Cattle 5360 243 12412 -2112 4760 5 41.0 42 1.1 1.9
———
			 Net Max # of % Avg.Mrgn %Gain
 $PL DrawDn Date Trades TIM Reqd /Mr+DD
Last 6 Months 21051 37216 on 20080123 26 100 8881 76.5
Last 12 Months 35119 37216 on 20080123 41 100 7216 63.8
Average / Year 14984 26195 Avg. Hi 22 38 95 7555 31.5
Full Run TOTAL 330907 72526 on 20050721 834 95 7555 16.0

The results look great except for the maximum draw down. What if we simply bought and held the com-
modities for this same time period? Would the old buy and hold out perform the long only Aberration
approach? The next table holds the answer.

 Total Avg Max in Last 12mn Trds % %Gain
 $PL $PL/Yr DrawDn $PL DrawDn /Yr %Wins TIM W:L /Mr+DD
Crude Oil 77510 3510 34700 27660 12120 6 54.9 100 1.5 9.2
Heating Oil 73626 3334 59816 33852 13327 6 54.1 100 1.4 5.4
Natural Gas -28890 -1628 167600 -16460 37640 6 47.7 100 .9 -.9
Soybeans 17810 806 48195 23845 6600 6 49.6 100 1.1 1.6

273A publication of Futures Truth™ Co.

Issue #2/2008

Miscellaneous Ramblings

Wheat -3875 -175 44563 16675 10225 5 43.2 100 1.0 -.4
Cotton -7190 -326 66895 955 5815 5 47.7 100 1.0 -.5
Rough Rice -30710 -1568 38650 4534 2810 6 38.1 100 .7 -3.9
Corn -19950 -903 31738 1925 7963 5 38.7 100 .7 -2.8
Sugar 2184 99 13978 157 3024 4 49.4 100 1.0 .7
Copper 95388 4319 35475 1000 22738 5 55.9 100 1.9 11.5
Pork Bellies 6464 293 49304 -5232 12628 5 46.8 100 1.0 .6
Live Cattle 23004 1042 14892 -4332 8140 6 55.6 100 1.3 6.8
———
 Net Max # of % Avg.Mrgn %Gain
 $PL DrawDn Date Trades TIM Reqd /Mr+
Last 6 Months 60426 38586 on 20080123 37 100 22945 196.4
Last 12 Months 96059 40402 on 20070821 74 100 22945 151.6
Average / Year 9270 45903 Avg. Hi 22 63 100 21525 13.5
Full Run TOTAL 204710 198067 on 20070111 1401 100 21525 4.2
———

Buy and hold not only made less money but it almost tripled the maximum draw down. Again, a system-
atic approach out performs the simple buy and hold. A calculated protective stop must be built in to the
system to help with the large retracements that occur in the commodity markets.

Continuous Versus Individual Contract Data

Recently while doing some testing on different trading approaches, I noticed differences in performance
numbers when using continuous data versus individual contract data. I used the exact system on the two
data formats and observed considerable differences. When you place a trade you place it in the actual
market, so you would think testing on actual data would be the most accurate. In some cases this is true.
However, there are two important elements that make this difficult if not impossible. The first problem
with back testing on actual contract data is that today’s popular software can’t handle the data manage-
ment of rolling from one contract to another. The software would have to trade, for example, the March
contract up until the rollover date, exit the position, unload the March contract, load the June contract,
calculate indicators/patterns on the new June contract and then initiate the position in the new contract.
The software could potentially do this twelve times a year (energies trade every month). The software
would also have to keep track of the P/L and the draw down from these rollover trades. Our own Excali-
bur software somewhat does just this. The limitation of Excalibur is that it forces rollovers on the last
day of the month prior to the expiration month and many times this is not the right time to rollover. The
stock indices continue trading the old contract for a week or more in the expiring month. So it turns out
Excalibur is trading a contract that is not yet the top step for a week or so. In a perfect world with perfect
software, rollovers would occur based on volume and open interest and not a static date. This type of data
management wouldn’t be that difficult to program and why it hasn’t yet been done is a mystery to me. We
have the data for all of the contracts so why can’t a program just simply preprocess the data and create a
database of front month contracts and keep track of the rollover data for each one. Maybe one day some-
one will do this at the retail level, because I am sure large and wealthy CTAs have this type of software at
their disposal.

The second problem occurs because there is very little overlap data between the expiring and new con-
tract. In the example above I outlined how software would unload the old contract data, load the new con-
tract data and recalculate the trade signals/indicators on the new data. Let’s say you are using a 200-day
moving average and you load the new contract data into memory to do your calculation, you will

274A publication of Futures Truth™ Co.

Issue #2/2008

Miscellaneous Ramblings

notice rather quickly that there isn’t 200 days worth of data to do your calculations. The new contract
simply does not have that large amount of data because no one traded that far back in time. And if there
is data going that far back, it probably is very thin and is not a good representation of how that particular
market had been trading. So we would need to add one more job to our dream software; after unloading
the March contract and loading the June contract, we would need to create a synthetic continuous contract
going back as far as necessary based off the last few contracts of data so we could calculate the signals/in-
dicators. In other words, the software would build continuous data dynamically all the while trading the
actual contract data. This may sound highly complex, but it could still be done.

Or we could just simply use synthetic data for the entire test period and ignore rollovers altogether. This
is what 90% or more of system testers do. They understand that their results may not exactly match what
would have occurred, but at least they can develop an expectation of performance.

I tested two systems on continuous and actual contract data. The first system was a simple 20-day Don-
chian break out – pure stop and reverse. The second system was a little more complex: buy orders were
placed at 20% of the 10-day ATR above the open when the market closed below its previous day’s close
but above the close three days prior and sell orders were place 20% of the 10-day ATR below the open
when the market closed above its previous day’s close but below the close three days prior. The two sys-
tems are symmetric; buy orders are just the opposite of the sell orders. The second system is also a pure
stop and reverse.

The following table shows the performance of the Donchian system. Individual contract data was used in
the first test and continuous in the second.

Individual Test
 Total Avg Max in Last 12mn Trds %Gain
 $PL $PL/Yr DrawDn $PL DrawDn /Yr %Wins TIM W:L /Mr+DD
US Bonds 49050 2221 26050 5450 9420 11 41.7 100 1.2 7.7
Euro Curr-DM 124688 5668 49025 9975 7638 11 42.3 100 1.4 11.0
Cotton 19740 894 36250 5085 3680 13 36.2 100 1.1 2.4
Japanese Yen 92925 4208 35163 9300 7788 11 43.8 100 1.3 11.3
Soybeans 2250 102 30950 9285 13790 14 38.8 100 1.0 .3
———
 Net Max # of % Avg.Mrgn %Gain
 $PL DrawDn Date Trades TIM Reqd /Mr+DD
Last 6 Months 20520 15765 on 20080110 32 100 9710 161.1
Last 12 Months 32650 15765 on 20080110 62 100 9710 128.2
Average / Year 13071 25235 Avg. Hi 22 60 100 9707 37.4
Full Run TOTAL 288648 62772 on 19941114 1323 100 9707 18.0
———

Continuous Test
 Total Avg Max in Last 12mn Trds % %Gain
 $PL $PL/Yr DrawDn $PL DrawDn /Yr %Wins TIM W:L /Mr+DD
US Bonds K 46220 2093 23340 5260 9610 7 39.5 100 1.3 8.0
Euro Curr K 136725 6409 49988 8825 10075 7 43.0 100 1.5 12.2
Cotton K 45715 2070 25000 6635 3625 7 37.9 100 1.3 8.0
Japanese K 93888 4252 33150 9613 7750 7 39.9 100 1.4 12.0
Soybeans K -1050 -48 31830 9910 13125 8 35.3 100 1.0 -.1

275A publication of Futures Truth™ Co.

Issue #2/2008

Miscellaneous Ramblings

 Net Max # of % Avg.Mrgn %Gain
 $PL DrawDn Date Trades TIM Reqd Mr+DD
Last 6 Months 19650 18220 on 20080110 21 100 9710 140.7
Last 12 Months 33863 18220 on 20080110 37 100 9710 121.2
Average / Year 14558 25040 Avg. Hi 22 36 100 9709 41.9
Full Run TOTAL 321498 65835 on 19941114 802 100 9709 19.3
———

The results are not that dissimilar and the differences can be attributed to the execution costs associated
with rollovers. The system rolled 506 times and at a cost of $75 that would equal to $37,950 and that is
pretty darn close to the difference in the results.

Now for the short term Open Range Break Out with Pattern Recognition system.

Individual Test
 Total Avg Max in Last 12mn Trds % %Gain
 $PL $PL/Yr DrawDn $PL DrawDn /Yr %Wins TIM W:L /Mr+DD
US Bonds -13860 -628 97340 11490 8960 29 45.0 100 1.0 -.6
Euro Curr-DM -40613 -1846 74800 -11325 24788 30 43.1 100 .9 -2.4
Cotton 169330 7668 9235 9715 3815 30 47.2 100 1.8 74.9
Japanese Yen 28250 1279 50150 -12913 18300 29 45.4 100 1.1 2.4
Soybeans -35 -2 32095 7610 11580 33 39.8 100 1.0 0.0
——— 	
			 Net Max # of % Avg.Mrgn %Gain
 $PL DrawDn Date Trades TIM Reqd /Mr+DD
Last 6 Months -27305 40005 on 20080124 81 100 9710 -109.8
Last 12 Months 3400 40005 on 20080124 139 100 9710 6.8
Average / Year 6479 21941 Avg. Hi 22 150 100 9702 20.5
Full Run TOTAL 143073 59722 on 20010509 3302 100 9702 9.3

Continuous Test
 Total Avg Max in Last 12mn Trds % %Gain
 $PL $PL/Yr DrawDn $PL DrawDn /Yr %Wins TIM W:L /Mr+DD
US Bonds K -21050 -953 86680 8390 8630 24 42.6 100 .9 -1.1
Euro Curr K -59750 -2801 89488 -12813 27000 26 43.6 100 .9 -3.0
Cotton K 72155 3267 16625 7295 3765 26 45.8 100 1.3 18.5
Japanese K 26988 1222 46513 -7825 12863 25 44.1 100 1.1 2.5
Soybeans K -63290 -2866 88730 6260 8640 29 36.6 100 .8 -3.2
——— 	
			 Net Max # of % Avg.Mrgn %Gain
 $PL DrawDn Date Trades TIM Reqd /Mr+DD
Last 6 Months -16120 45093 on 20080129 66 100 9710 -58.8
Last 12 Months -533 46838 on 20070212 116 100 9710 -.9
Average / Year -2036 11136 Avg. Hi 22 129 100 9700 -9.8
Full Run TOTAL -44953 130731 on 20030819 2840 100 9700 -1.4
———

As you can see from the results the difference cannot be simply attributed to rollover costs. The finan-
cials and currencies are reasonably (term used loosely) close, but the cotton and beans are way off. The
smoothing process that is used to create continuous contracts undoubtedly has an effect on the relation-
ships of recent closing prices and potentially on the range of prices themselves. We can see if the smooth

276A publication of Futures Truth™ Co.

Issue #2/2008

Miscellaneous Ramblings

ing process has affected the ranges by simply eliminating the pattern from our test. The following tables
reflect a simple 20% ATR Open Range Break Out test.

Individual Test
 Total Avg Max in Last 12mn Trds % %Gain
 $PL $PL/Yr DrawDn $PL DrawDn /Yr %Wins TIM W:L /Mr+DD
US Bonds 1322620 59892 3170 60600 1250 125 67.8 100 6.1 1020.3
Euro Curr-DM 1388450 63111 9625 47650 4888 128 62.0 100 3.3 520.5
Cotton 927860 42016 3535 31370 2520 127 64.1 100 5.5 926.5
Japanese Yen 765825 34679 10413 33625 4025 121 57.1 100 2.3 275.8
Soybeans 677730 30690 6275 50245 3240 133 62.5 100 3.8 402.5
———
 Net Max # of % Avg.Mrgn %Gain
 $PL DrawDn Date Trades TIM Reqd /Mr+DD
Last 6 Months 129030 2855 on 20080108 306 100 9710 2053.8
Last 12 Months 221155 2855 on 20080108 626 100 9710 1760.1
Average / Year 230150 5416 Avg. Hi 22 634 100 9710 1521.6
Full Run TOTAL 5082480 8157 on 19990216 14001 100 9710 1288.1
———

Continuous Test
 Total Avg Max in Last 12mn Trds % %Gain
 $PL $PL/Yr DrawDn $PL DrawDn /Yr %Wins TIM W:L /Mr+DD
US Bonds K 1148450 52005 2680 56560 1550 122 67.3 100 5.8 966.6
Euro Curr K 1312138 61506 21825 40225 4738 124 61.8 100 3.2 252.9
Cotton K 759615 34398 3370 29705 2750 124 64.0 100 4.6 787.1
Japanese K 759963 34413 12150 29875 4425 118 56.6 100 2.4 240.5
Soybeans K 657945 29794 5585 53915 3080 128 61.8 100 3.7 429.6
———
 Net Max # of % Avg.Mrgn %Gain
 $PL DrawDn Date Trades TIM Reqd /Mr+DD
Last 6 Months 130940 2778 on 20070809 303 100 9710 2097.1
Last 12 Months 207973 2778 on 20070809 613 100 9710 1665.4
Average / Year 210028 6593 Avg. Hi 22 611 100 9710 1288.3
Full Run TOTAL 4638110 19377 on 20001002 13498 100 9710 722.1
———

Wait! Before you get carried away with the results I need to qualify this test. To do an accurate test I had
to cheat a little bit. This open range break out system only buys today when today’s close is above the
open and only sells when today’s close is lower than the open. I am looking at today’s close before tak-
ing action today, which is impossible. By doing this I force the system to only have one trade a day and
the systems should be buying and selling on the exact same days. The number of trades is almost the
same once rollovers are omitted. The numbers are very close except for the Eurocurrency maximum draw
down. This can be explained due to the fact that the data before 1999 is different for the continuous data
than it is for the individual contract. The continuous data prior to 1999 is the old euro currency (before
it replaced the Deutsche mark) and the individual contract data is the old Deutsche mark multiplied by a
certain constant. The smoothing process had very little impact on the actual ranges of the data and the
relationship between the today’s opening and closing prices. This leads us to believe that the difference
occurs in the relationships of the closing prices over the past few days. The smoothing process keeps the
current days open, high, low and close relationship intact, but seems to change the relationship of today’s
price action with prior days.

277A publication of Futures Truth™ Co.

Issue #2/2008

Miscellaneous Ramblings

Latest Version of the System Tester

I made just one modification to the System Tester software. I created a subroutine to check to see which
order should be executed first. Right now the software would execute whichever order was placed first. It
wasn’t smart enough to check to see if a reversal order would occur prior to say a liquidation order. Just
go to the website to download the latest version.

Download the System Tester code at
ftp://www.FuturesTruth.com/pub/SystemTester1.3.xls

If you have any questions on this article or code it contains, feel free to contact
George directly at George@FuturesTruth.com.

SystemTesterManual Wed, May 7, 2008 1

Before you proceed make sure you have read the first part of the
manual so that you will understand the evolution of the
SystemTester software. In addition, you will gain much insight
into how to properly use the software.

Think of testing a system as one big loop where we are looping
through each day of historical data and taking action when
our trade criteria is met.

Keep in mind that this is not a high priced finished product like
TradersStudio or TradeStation. Expect to get your hands dirty
playing around with the code. The development of this software
was designed to be educational. With a little bit of elbow grease
you can test and evaluate your own trading systems.

Here is a sample of a simple trading system. It buys on a stop
at the Highest High of the past 20 days and sells (short) on the
Lowest Low of the past 20 days. It incorporates $2000 protective
stop and liquidates any loss after 10 trading days.

There are several built-in functions at your disposal. The
following code provides the syntax for accessing them. Some are
functions and some are subroutines. Make sure you use the
right number of parameters for the functions/subroutines.

The most import subroutine is the Trade routine. This is the
subroutine that you will use most often.

You call this subroutine whenever you ready to place an order.

Here are the different combinations one could use to place orders.

Call Trade(Buy, "MyBuyName" , Price , stp, i) - buys on stop
Call Trade(Buy, "MyBuyName" , myOpen, mkt, i) - buys market on Open
Call Trade(Buy, "MyBuyName" , myClose,mkt, i) - buys market on Close
Call Trade(Buy, "MyBuyName" , Price , lmt, i) - buys on limit

You can call the Trade subroutine with Sell, ExitLong, and ExitShort.

Call Trade(ExitLong, "MyExitLongName" ,Price, stp, i)
Call Trade(ExitShort, "MyExitShrtName" ,Price, stp, i)
Call Trade(Sell, "MySellName" ,Price, stp, i)

Also read the notes at the top of the actual VB code when you open
the source code from the VB Editor. Also remember you must change
the contract specifications in Module 2 inside the RunSystemTester()
subroutine. You must know the PointValue, MinTick and the number
of days you will need for your calculations. The SystemTester is
preloaded with Crude Oil data. You can see how this subroutine is
modified to work with this particular market. If any of the
parameters are incorrect, you will have inaccurate results or
Excel will halt execution. Copy and paste the data to test from the text files.

'**
'**** Main Trading Loop ****
'**
Do While i <= numRecords

 i = i + 1 'Leave in.
 intraDayTrdCnt = 0 'Leave in.

 If barsLong <> 0 Then barsLong = barsLong + 1 'Leave in.
 If barsShort <> 0 Then barsShort = barsShort + 1 'Leave in.

SystemTesterManual Wed, May 7, 2008 2

'**
'**** This is a good place to put all of your function calls ****
'**** and system calculations. ****
'**

 Call BollingerBand(myClose, 10, 2, avg, upBand, dnBand, i, 1)
 simpleAvg = Average(myClose, 10, i, 1)
 rsiVal = RSI(myClose, 14, i, 1)
 Call Stochastic(3, 4, 7, stoK, stoD, slowD, i, 1)

'**
'**** Put All Of Your Orders Here ****
'**

 If marketPosition <> 1 Then
 Call Trade(Buy, "D-Buy", Highest(myHigh, 20, i, 1), stp, i)
 End If
 If marketPosition <> -1 Then
 Call Trade(Sell, "D-Sell", Lowest(myLow, 20, i, 1), stp, i)
 End If
 If marketPosition = -1 Then
 Call Trade(ExitShort, "ExitShortStop", entryPrice + 2000 / TickValue, stp, i)
 If barsShort > 10 And myClose(i) > entryPrice Then
 Call Trade(ExitShort, "10dayShOut", myClose(i), moc, i)
 End If
 End If
 If marketPosition = 1 Then
 Call Trade(ExitLong, "ExitLongStop", entryPrice - 2000 / TickValue, stp, i)
 If barsLong > 10 And myClose(i) < entryPrice Then
 Call Trade(ExitLong, "10dayLgOut", myClose(i), moc, i)
 End If
 End If

'**
'**** End of Main Traiding Loop ****
'**** No orders allowed below this point ****
'**

